bmw m2 2016 1024 tyres
Michael Taylor13 Nov 2019
NEWS

Tyre emissions targeted in next-level clean-air push

British study finds exhaust gases account for just a third of vehicle emissions

A shocking UK study has found that exhaust fumes account for just a third of all emissions from vehicles, with the rest made up from tyre, road and brake wear.

With the balance of opinion swinging against combustion fuels in cars, environmental groups are taking the next leap and bundling the $US240 billion a year tyre industry into their emissions battles.

The British Government’s Air Quality Expert Group (AQEG) emissions research organisation has recommended that tyre wear should be prioritised as a “source of ambient concentrations of airborne particulate matter, even for vehicles with zero exhaust emissions of particles”.

Research from Europe’s Emissions Analytics indicates that emissions from normal tyre wear will be the next big environmental mountain to climb, regardless of whether cars are electric or combustion powered.

In fact, electric cars could make the phenomenon worse, with most EVs weighing considerably more than similarly sized combustion vehicles, plus having far more initial torque from rest.

The British government’s Air Quality Expert Group (AQEG) found that more than a quarter of all microplastics in the oceans came from normal tyre wear and Emissions Analytics insists it could be an even bigger environmental problem than disposing of old tyres.

“Tyres also sit uniquely at the intersection of air quality and microplastics,” the Emissions Analytics study document claimed, insisting it could also spark a new public health scare.

“You cannot see tyres wearing and therefore ‘tyre wear’ in this sense remains imperceptible except in deliberately extreme use such as branches of motorsport such as drag racing and drifting.

“Regarding public health, there is a tentative emerging consensus among epidemiologists and other medical researchers that ultra-fine particles are potentially more injurious to human health than coarse particles, owing to their ability to translocate to the bloodstream through the lungs.

“A [normal] tyre abrades owing to the friction between its contact patch and the road surface. It ‘emits’ particles across a broad size spectrum, from coarse to fine to ultrafine to nanoscale.”

Yet, the study found that the biggest issues with tyre wear came with both coarse particles falling quickly to the ground and fine particles remaining airborne, blown away from the road, before settling on the ground.

“Particle dispersion and deposition eventually occurs, but that is not the end of the story,” Emissions Analytics claimed.

“The particles typically pass into the watershed through street drainage and are estimated to be a primary source of as much as 28 per cent of microplastics found in the marine environment.”

The report relied heavily on new real-world microplastics testing equipment and techniques, which the tyre industry itself insists it never had access to.

New equipment has helped Emissions Analytics to measure 14 microparticle sizes from 6 nanometres to 10um (a thousand of which make up a millimetre) for both mass and number.

Instead, just like the car industry up until last October’s Worldwide Harmonized Light Vehicle Test Protocol (WLTP) regulations, the tyre industry relied on laboratory tests to measure its emissions.

“We support the recommendation of further inquiry into the feasibility of a standardised test method for measuring tyre abrasion rate, which is currently being looked into by the European Commission with support of Industry,” said the European Tyre and Rubber Manufacturer’s Association in a statement.

“However, as mentioned by the report, the tyre industry’s efforts alone will not be enough to address the tyre and road wear particles (TRWP) challenge. The ETRMA fully agrees that the debate considers both tyre design and the diverse external factors at play when finding solutions for reducing TRWP generation, such as driving behaviour, vehicle and road characteristics and traffic conditions.”

However, it strongly disagreed with the AQEG’s test methodology, insisting it relied on 1990s tests that were “no longer scientifically robust, which highlights the need for additional research.

“The ETRMA therefore would like to bring to their attention the results of more recent peer-reviewed research regarding the nature, size, density and dispersion of TRWP.

“For example, The Tire Industry Project (TIP) conducted a sampling of urban and suburban environment to evaluate the presence of TRWP in airborne particulate matter.

“It concluded that dust from tyres only makes up a very small concentration of the total dust particles in the air (on average, less than 1% of PM10 and PM2.5ii) because TRWP are physically larger and denser than other airborne PM emissions.”

But Emissions Analytics claimed that over a typical 20,000-50,000km lifespan, a road tyre would lose up to 30 per cent of its rubber, or up to 2kg of weight.

“In one recent Emissions Analytics’ test, conducted under real-world rather than lab conditions, the four tyres on a standard hatchback lost 1.8kg over just 200 miles of fast road speeds, far in excess of what had been anticipated by the testers.”

The organisation insisted the emissions free pass given to tyres over the last century came about because of the perception that they were made from a natural product, rather than crude oil.

“The recent re-characterisation of tyre wear emissions as ‘microplastic pollution’ corrects the broadly misleading public idea that tyres are composed principally of natural rubber. Instead, tyres are a close derivative of crude oil and their wholesale pricing typically tracks it,” it said.

“A typical car tyre comprises 45 percent oil-derived synthetic rubber (polymer), 40 percent oil-derived carbon-black (filler), and 15 percent various additives to aid production processes, some of which typically contain heavy metals and some of which are also oil-derived.

“Some tyres contain natural rubber, but to all intents and purposes we live in the age of the plastic tyre.”

The problem is expected to become worse with more electric cars on the road, except where (in rare cases like BMW’s i3) the cars are made with lightweight material to offset the battery mass.

The AQEG report suggested that nanoparticulate emissions from tyres rise up to 1.8 per cent for every 10kg increase in a vehicle’s mass. That’s bad news in the era of SUVs and crossovers, but far worse for the looming era of EVs, which are estimated to be around 29 per cent heavier than similarly-sized combustion vehicles.

“A whole generation of new EVs is hitting the roads with considerably larger and heavier battery packs than in the past,” Emissions Analytics reported.

“Electric vehicles offer instant torque and higher kerb weights, implying higher tyre wear rates, even while regenerative braking is expected to reduce brake wear emissions.

“But a Tesla Model S or Model X, Mercedes EQC, Audi e-tron or Jaguar I-PACE, EVs with larger ranges and battery packs in the range of 60-100kWh, weigh 2.3-2.6 tonnes.

“The 600kg battery pack in the Mercedes EQC would (on the AQEG/DEFRA model) potentially increase nanoparticle emissions from tyres by 48-108%, compared to a conventional vehicle weighing 600kg less.

“The same argument can be extended to internal combustion engine vehicles. A heavier vehicle increases tyre wear, whereas lightweighting mitigates it. This has implications for the broader market trend towards SUVs, where often particularly large rim tyre sizes are adopted.”

Tags

Car News
Tyres
Written byMichael Taylor
Our team of independent expert car reviewers and journalists
Disclaimer
Please see our Editorial Guidelines & Code of Ethics (including for more information about sponsored content and paid events). The information published on this website is of a general nature only and doesn’t consider your particular circumstances or needs.
Love every move.
Buy it. Sell it.Love it.
®
Scan to download the carsales app
    DownloadAppCta
    AppStoreDownloadGooglePlayDownload
    Want more info? Here’s our app landing page App Store and the Apple logo are trademarks of Apple Inc. Google Play and the Google Play logo are trademarks of Google LLC.
    © carsales.com.au Pty Ltd 1999-2026
    In the spirit of reconciliation we acknowledge the Traditional Custodians of Country throughout Australia and their connections to land, sea and community. We pay our respect to their Elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.